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a b s t r a c t

A parallel implementation of the electromagnetic dual-primal finite element tearing and
interconnecting algorithm (FETI-DPEM) is designed for general three-dimensional (3D)
electromagnetic large-scale simulations. As a domain decomposition implementation of
the finite element method, the FETI-DPEM algorithm provides fully decoupled subdomain
problems and an excellent numerical scalability, and thus is well suited for parallel com-
putation. The parallel implementation of the FETI-DPEM algorithm on a distributed-mem-
ory system using the message passing interface (MPI) is discussed in detail along with a
few practical guidelines obtained from numerical experiments. Numerical examples are
provided to demonstrate the efficiency of the parallel implementation.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Engineering simulations of large and complex structures require the development of fast algorithms which can fully uti-
lize parallel computing resources. Domain decomposition-based methods, which can provide a balanced data distribution
across processors, become the best choice for such simulations. Among a variety of domain decomposition methods (DDMs),
the dual-primal finite element tearing and interconnecting (FETI-DP) method exhibits an excellent numerical scalability and
has become one of the most scalable parallel solvers in computational mechanics and acoustics [1–5].

As the edge-element implementation of the FETI-DP method for electromagnetic analysis, the FETI-DPEM method has
been proposed recently for the simulation of three-dimensional (3D) open-region electromagnetic problems [6–9]. The
FETI-DPEM method is shown to be numerically scalable [8] by combining the dual-primal (DP) idea with two Lagrange mul-
tipliers and implementing a Robin-type transmission condition at the subdomain interfaces. Over the past few years, the se-
rial implementation of the FETI-DPEM method has been successfully applied to finite array problems by fully exploiting their
geometrical repetitions. The first parallel implementation of the FETI method for electromagnetic analysis was explored in
[10] without any coarse grid correction. The convergence rate of the FETI-H method [11] is recently studied in [12] for solv-
ing electromagnetic scattering problems, where ‘‘H” stands for the Helmholtz equation. A relatively simple OpenMP imple-
mentation was carried out for a specialized FETI-DPEM algorithm and used for simulating finite array problems [13]. For
other DDMs applied in electromagnetics, an accurate solution and a fast convergence cannot be obtained simultaneously
due to the use of auxiliary variables defined at the edges shared by faces with discontinuous normal directions [14]. An
acceptable convergence rate is achieved only with a compromised accuracy and by using the Gauss-Seidel preconditioner,
. All rights reserved.
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which has been found inefficient for parallel computation. In contrast, the numerical scalability is achieved in the FETI-DPEM
without using any preconditioner.

The general principle of the FETI-DPEM method is first to divide the entire computational domain into nonoverlapping
subdomains, where an incomplete solution of the field in the subdomain is constructed using a direct solver. Next, tangential
field continuities are enforced through the Robin-type transmission condition at the subdomain interfaces by using two La-
grange multipliers. This yields an equivalent reduced-order interface problem, which can be solved using an iterative algo-
rithm. This iterative solution using the Krylov subspace method is then accelerated by propagating the residual error to the
whole computational domain at each iteration through the construction of a global coarse problem related to the degrees of
freedom (DOFs) at the subdomain corner edges (edges shared by more than two subdomains interior to the computational
domain). The solution to the interface problem can then serve as the boundary condition for individual subdomain problems
to evaluate the field inside the subdomains. The aforementioned process is highly parallelizable and can be implemented for
the simulations of large-scale electromagnetic problems using massively parallel systems.

In this paper, the FETI-DPEM algorithm developed in [8] is outlined first. It is followed by the detailed discussion of its
parallel implementation on a distributed-memory system using the message passing interface (MPI). Finally, numerical
examples are then provided to demonstrate the efficiency of the implementation.
2. The FETI-DPEM formulation

The FETI-DPEM method, as the edge-element implementation of the FETI-DP method [1–5], has been developed for elec-
tromagnetic analysis in [6], in which its potential capability for parallel computing is theoretically explored. To make the
FETI-DPEM method scalable on a massively parallel computing system, a numerically scalable algorithm was developed
in [8] by constructing a coarse grid correction at subdomain corner edges and utilizing the Robin-type transmission condi-
tion at the subdomain interfaces to replace the original Dirichlet transmission condition used in [6]. In this section, the FETI-
DPEM method introduced in [8] is outlined to provide necessary information for subsequent discussions.

In the FETI-DPEM method, a computational domain is first divided into nonoverlapping subdomains. In the ith subdo-
main, the electric field at the subdomain interfaces and the subdomain-level corner related system can be obtained after
eliminating the subdomain interior volumetric unknowns as
Bi
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where the subscripts c and r represent the subdomain corner DOFs and the remaining DOFs, respectively. Matrices Ki
rr ;K

i
rc ,

and Ki
cc and excitation vectors f i

r and f i
c are the subdomain finite element system matrices and excitation vectors, respec-

tively. The dual unknown k represents the contribution from the Robin-type transmission condition at the subdomain inter-
faces. The Boolean matrix Bi

r extracts the interface DOFs of the ith subdomain and Bi
c extracts the local corner DOFs from the

global corner DOFs. It is noted that at this stage the subdomain interior fields become fully decoupled and the associated
volumetric unknowns are eliminated independently with the introduction of the dual unknown k at the subdomain
interfaces.

To couple the fields over all subdomains, a matrix equation representing the interface continuity condition is then derived
by enforcing the electric and magnetic tangential field continuities across the subdomain interfaces through the Robin-type
transmission condition. This yields the matrix equation
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where the Boolean matrix Q i extracts from the dual unknowns k the component in the ith subdomain and Ti
j extracts the

interface DOFs associated with Cij in the ith subdomain, where Cij denotes the interface shared by adjacent subdomains i
and j. The mass-like matrix Mij is a primal-to-dual projection matrix between the ith and jth subdomains. The reader is re-
ferred to [8] for their detailed expressions.
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The global corner DOFs related system equation is obtained by assembling the subdomain contributions from (2), and can
be written as
Fig. 1.
~KccEc ¼ ~f c þ ~Kcrk ð5Þ
where
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The matrix ~Kcc is a highly sparse symmetric matrix representing the global corner DOFs related system.
By combining (3) and (5) and eliminating Ec , we obtain the FETI-DPEM interface equation for the dual unknowns k
~Krr þ ~Krc
~K�1

cc
~Kcr

h i
k ¼ ~f r � ~Krc

~K�1
cc

~f c: ð7Þ
The interface Eq. (7) is generally indefinite, and can be solved using a Krylov subspace method. After the interface prob-
lem is solved, the electric field inside each subdomain can be evaluated independently by using the calculated boundary con-
dition k at the subdomain interfaces.

3. Parallel implementation of the FETI-DPEM algorithm

The scalability of the FETI and FETI-DP algorithms for various engineering applications using massively parallel compu-
tation has been explored and demonstrated in [1–5,15,16]. In this paper, we focus on the parallel implementation of the
FETI-DPEM algorithm on a distributed-memory system using the MPI for 3D electromagnetic analysis.

3.1. Parallel implementation framework

Before applying the FETI-DPEM method, we first decompose the computational domain into Ns subdomains automatically
using a greedy-like algorithm and a deterministic optimization scheme provided by an automatic meshing partition software
DOMDEC [17]. In general, the subdomain interfaces resulting from such a decomposition typically have irregular shapes,
multi-scale mesh sizes, and material inhomogeneities. The basic requirements for an effective decomposition are such that
it provides a small number of nodes on subdomain interfaces and a balanced load for parallel computation. A balanced load
Geometry of five monopoles on a finite ground plane. All dimensions are in inches. (a) Top view. (b) Side view of a monopole with SMA connector.
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here refers to a similar number of unknowns for each subdomain, which yields a similar amount of work for each processor.
The decomposed subdomain data are distributed across processors, which can then be processed independently and concur-
rently in parallel.

The implementation of the FETI-DPEM algorithm consists of three major steps: the preprocessing step, the solution of the
interface Eq. (7), and the recovery of subdomain solutions. In the preprocessing step, each subdomain problem is processed,
where the subdomain finite element system matrices Ki

rr ;K
i
rc;K

i
cc and Mij and the excitation vectors f i

r and f i
c are assembled. In

addition, the sparse matrix Ki
rr is factorized, whose factorization is stored and will be used repeatedly throughout the sim-

ulation. As mentioned in Section 2, such a preprocessing procedure only involves subdomain operations; thus, it can be car-
ried out completely in parallel. The preprocessing step is followed by the iterative solution of the interface Eq. (7), where the
information exchanges among processors occur in the matrix–vector multiplication process at each iteration. During the ma-
trix–vector multiplication process, the calculation of the subdomain contributions can be performed completely in parallel
by using the information obtained in the preprocessing step, whose details are provided in Section 3.2. The global corner
DOFs related system ~Kcc is fully assembled over all subdomains in parallel. Such a corner system is relatively small due to
the small number of corner DOFs. Hence, a local copy of its factorization is kept by all processors to reduce the parallel over-
head and implementation complexity. Detailed discussions about the effective ways to implement the parallel solution of
the coarse problem are provided in Section 3.3. After solving the interface problem, the fields in the subdomains are then
recovered independently and concurrently in parallel by using the calculated boundary condition at the subdomain
interfaces.
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Fig. 2. Input and mutual impedances of monopole V, where R and X are the resistance and reactance, respectively. (a) Input impedance Z55 ¼ R55 þ jX55. (b)
Mutual impedance Z51 ¼ R51 þ jX51.
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3.2. Parallel matrix–vector multiplication

When using an iterative method to solve (7), we need to evaluate the matrix–vector multiplication dk ¼
~Krr þ ~Krc

~K�1
cc

~Kcr

h i
kk at the kth iteration. To start with, we store kk and the local matrix-vector product dk in a distributed fash-

ion to avoid the parallel bottleneck when kk becomes prohibitively large. More specifically, each processor holds a segment of
kk as input and also outputs its own share of dk at the end of the matrix–vector multiplication process. This calculation can be
accomplished in two steps:
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Using the distributed kk, all the required computations in the jth subdomain including subdomain matrix–vector multi-
plications and the solution of the subdomain local problems in Step 1 can be performed subdomain-by-subdomain, and thus
can be easily parallelized. The communications between the neighboring subdomains are required when implementing theP

j2neighborðiÞT
iT

j operator, which requires a sequence of data exchanges between two processors representing two adjacent
subdomains. These data exchanges are realized by non-blocking communications isend and irecv, which also allow the over-
lap of communication and computation. In order to carry out Step 2, we split it into three substeps:
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Fig. 3. Input and mutual impedances of monopole II, where R and X are the resistance and reactance, respectively. (a) Input impedance Z22 ¼ R22 þ jX22. (b)
Mutual impedance Z25 ¼ R25 þ jX25.
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Using the distributed kk, the calculations in Step 2-1 only involve subdomain-level operations and can be fully parallel-
ized, whose local sums are reduced to obtain yk. The solution in Step 2-2 is treated as a coarse grid correction, which couples
all the subdomain computations and increases the convergence rate by propagating the error globally at each iteration. More
implementation details about Step 2-2 are provided in Section 3.3. The calculated xk is scattered to all processors in Step 2-3,
where the subdomain-level calculations can be carried out in parallel and the information exchanges between the neighbor-
ing subdomains are accomplished in the same non-blocking communications performed in Step 1.

When using the parallel conjugate gradient (CG) based iterative solver, two extra synchronizations are required to imple-
ment the matrix–vector multiplication process due to the existence of the global coarse problem. It will be shown in Section
3.3 that the number of synchronizations can be reduced by carefully manipulating the solution to the coarse problem. It is
worthwhile mentioning that Br;Bc;Q and T are Boolean matrices, whose matrix–vector multiplications can be performed
without any floating-point operation.

3.3. Implementation of the coarse problem

Step 2-2 in Section 3.2 is referred to as the coarse grid correction, which increases the convergence by damping the low-
frequency component error in the solution similar to the one in the multigrid method. As mentioned in Section 3.2, such a
coarse problem is global, which unfortunately increases the complexity in the parallel implementation. Three effective ways
to implement the solution of the coarse problem are described in [1–5] [15] and [16], which can be summarized as follows.

(1) In the first implementation, a local copy of ~Kcc ’s factorization is kept by all the processors. Such a factorization is used
repeatedly in the forward and backward substitutions in the solution of the coarse problem in Step 2-2, which reduces
the parallel overhead by decreasing the number of required synchronizations. Instead of introducing two extra syn-
chronizations in Step 2, only one allreduce process is required to obtain xk from all processors and then redistribute
it. However, it is worthy mentioning that the factorization of ~Kcc is accomplished completely in serial, which decreases
the parallel speedup as the number of processors increases according to Amdahl’s law.

(2) The second implementation partitions the full matrix ~K�1
cc such that each processor keeps the related submatrix of ~K�1

cc .
Therefore, a matrix–vector multiplication is carried out instead of performing forward and backward substitutions in
Step 2-2 for xk. The benefit of this implementation is that only one synchronization allreduce is required in Step 2.
However, such an implementation shares the same disadvantage as the first implementation and it is typically less
efficient when the number of iterations for solving the interface problem is small.

(3) The third implementation applies a parallel sparse direct solver to the coarse problem. In this case, the ~Kcc matrix is
first factorized in parallel and parallel forward and backward substitutions are carried out at each iteration. Such an
implementation minimizes the CPU idle time but it increases the parallel overhead and the number of synchroniza-
tions at each iteration and also requires a highly effective parallel sparse solver even for very small problems.

As a summary, the optimal implementation of the coarse problem requires the trade-off between the distribution of float-
ing-point operations and its related parallel overhead; thus, it is typically machine and problem dependent. In this work, all
the implementations have been tested. Due to the small coarse problem sizes for all the testing cases, it has been found that
the first implementation outperforms in all numerical experiments; therefore, only the results using the first implementa-
tion are provided.

3.4. Iterative solver for the interface problem

In the previous implementation of FETI-DPEM method, the restarted generalized minimum residual (GMRES) method is
applied to solve the indefinite and unsymmetric interface Eq. (7), which provides a fast and monotonically decreasing con-
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Fig. 4. Gain patterns in two principal planes at 4:6 GHz when only monopole V is excited. (a) / ¼ 0 plane. (b) / ¼ p=2 plane.
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vergence [6–8]. However, the restarted GMRES suffers from the poor scalability in parallelization [18] and hence, is replaced
by a CG based method such as the stabilized biconjugate gradient (BiCGSTAB) method in this work for a cheaper memory
usage, a comparable convergence, and a better parallel scalability. When applying the BiCGSTAB method to the iterative
solution of the interface Eq. (7), two matrix–vector products are calculated in parallel at each iteration. Other vector com-
putations such as the calculations of the residue and search direction vectors can also be performed on a subdomain-by-sub-
domain basis; thus, they are also parallelized. More specifically, the computation of vector inner products is performed by
each processor and the local partial sums are accumulated and redistributed by the global communication allreduce.

3.5. Using higher-order hierarchical basis functions

Higher-order hierarchical basis functions [19] are employed in the FETI-DPEM for its easy p-adaption and a better con-
dition number in the resultant finite element matrix. These basis functions are formed by adding new functions to the lower-
order basis functions and also provide separate representation of the gradient and rotational parts of the vector field. In the
FETI-DPEM method, the enforcement of the field continuity is through the equalization of DOF pairs with the aid of the La-
grange multipliers. When using the lowest-order hierarchical basis function, such DOF pairs are associated with the finite
element edges at the subdomain interfaces, which can be easily identified using the global coordinates associated with edge
vertices. However, when higher-order hierarchical basis functions are used, the face basis functions are introduced and mul-
tiple DOF pairs are associated with each edge, which makes the identification of DOF pairs extremely difficult. It is noticed
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that if a face (triangle) located at the subdomain interfaces has the same local node numbering from different subdomains,
the DOF pairs can be identified easily using the global coordinate information associated with the vertices of each face. Such
a regulation is accomplished by reordering the local nodes in each element based on their global coordinates. As a by-prod-
uct, it also eliminates the regulation process to align the directions of the basis functions associated with the subdomain
interfaces.

4. Numerical examples

In this section, we validate the parallel implementation of the FETI-DPEM algorithm and demonstrate its capability by
simulating general 3D open-region electromagnetic problems. All the computations were performed on an Apple Xserve sys-
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tem (cluster distributed-memory architecture), where each node has two 2 GHz G5 processors and 4 GB of RAM. For each
simulation, the BiCGSTAB method with a convergence criterion of e < 1� 10�3 is used for solving the interface equation.

The first example is taken from the Electromagnetic Code Consortium (EMCC) antenna benchmarks [20], in which the
radiation of five identical monopoles with SMA connectors placed on a finite ground plane is analyzed using the FETI-DPEM
method. The detailed configuration of the monopole array and the geometry of a monopole with the SMA connector are
shown in Fig. 1, where the teflon in the coaxial cable has a dielectric constant of 2 and a loss tangent of 0.0002. In the cal-
culation, the monopoles are excited one at a time, while others are terminated with a matched load. The self impedances Z55

and Z22 for monopoles V and II, calculated at the input port of the SMA connectors, are shown in Figs. 2 and 3 together with
the calculated mutual impedances Z51 and Z25. Good agreement has been observed over a wide frequency band with the re-
sults obtained using the time-domain finite element method (TD-FEM) [21]. The ĥ-polarized gain patterns when monopole V
is excited at 4.6 GHz are shown in Fig. 4 for the two principal planes: / ¼ 0 and / ¼ p=2, and compared with the TD-FEM
results.
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Fig. 9. Parallel speedup versus the number of processors with Ns ¼ 128.

Fig. 10. Simplified submarine structure simulated. (a) Geometry of a free-standing submarine. (b) Illustration of the computational domain decomposed
into 514 subdomains.
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In the DDM process, it is obvious that, as the number of subdomain increases, the time associated with the subdomain
analysis in the preprocessing step deceases monotonically due to the reduced size of the subdomain problems, whereas
the time to solve the interface equation first decreases due to smaller subdomain problems and then increases due to an
increasing number of interface and corner unknowns. Therefore, in this simulation, we decompose the computational do-
main into 16, 32, 66, 128 and 200 subdomains to find an optimal decomposition. The wall clock time for calculating the solu-
tion at a single frequency using 16 processors is reported in Fig. 5, where the optimal number of subdomains for this problem
is found to be Ns ¼ 128. In the simulation, a discretization size of k=h ¼ 10 and second-order hierarchical basis functions are
used, where h is the mesh size. When using this optimal number of subdomains, the total number of FEM unknowns, the size
of the interface equation, and the size of the coarse problem are 1:4� 106;1:9� 105 and 3:7� 103, respectively. This corre-
sponds to approximately 11,000 unknowns for each subdomain. It can be seen in Fig. 5 that the total computational time is
not very sensitive to the number of subdomains around the optimal number. A general rule to determine the number of sub-
domains is to divide the total number of FEM unknowns by a number between 7; 000 � 25; 000, which can be used to deter-
mine the optimal number of subdomains for all other problems with no need for any further numerical experiments.
Averaged over the whole frequency band, 66 iterations are required to solve the interface equation, and for the reference
purpose a total solution time of 1.9 min for each frequency sample is required when 16 processors are used.

As the parallel performance is concerned, the parallel speedup is defined with respect to the wall clock time using four
processors as
Speedup ¼ 4� T4

TNp

ð8Þ
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Fig. 11. Bi-static RCS for the submarine in the x� y plane. (a) 300 MHz. (b) 600 MHz.
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where T4 and TNp denote the wall clock time using four and Np processors, respectively. The total parallel speedup using up to
Np ¼ 128 processors is shown in Fig. 6 together with the parallel speedups for the preprocessing step and the interface solu-
tion step, when the number of subdomains is set to Ns ¼ 128. It can be observed that an excellent total parallel speedup is
achieved when Np 6 32, and a reasonable performance is obtained when Np is further increased.

In the next example, a conformal cavity-backed patch antenna radiating on a platform composed of a conducting cylinder
and a wing is simulated. As shown in Fig. 7, the patch antenna with its longer edge aligned with the cylinder’s axis is fed with
a coaxial line and housed in a dielectric filled rectangular cavity with �r ¼ 2:17. The coax feed with filling material of
�r ¼ 2:17 has an inner radius of rin ¼ 0:6 mm and an outer radius of rout ¼ 2:05 mm. The normalized radiation pattern of
the patch antenna in the H-plane is calculated at its resonant frequency of 3.3 GHz and compared in Fig. 8 with measurement
data [22,23]. The numerical result agrees well with the measurement for both co- and cross-polarizations. In the simulation,
a discretization size of k=h ¼ 6 and third-order hierarchical basis functions are used and the optimal decomposition is deter-
mined as Ns ¼ 128 using the rule stated earlier, which corresponds to approximately 23,000 unknowns for each subdomain.
The total number of FEM unknowns, the size of the interface equation, and the size of the coarse problem are
2:9� 106;3:8� 105 and 5:7� 103, respectively. The parallel speedup versus the number of processors defined in (8) is shown
in Fig. 9, where for the reference purpose a total solution time of 4.3 min is required when 16 processors are used.

The two examples above were chosen because there are independent solutions available to validate the solutions of the
proposed method. With the current parallel implementation described in this paper, the FETI-DPEM algorithm can deal with
much larger general electromagnetic problems than could be handled by its serial version. It is observed in the numerical
results that as Np increases, the parallel efficiency decreases using our current implementation. Such a performance can
Fig. 12. Electric current induced on the surface of the submarine by a plane wave incident from the þx̂ direction. (a) Current distribution from a ĥ-polarized
plane wave. (b) Current distribution from a /̂-polarized plane wave.



Table 1
Number of iterations required for solving the interface equation at different operating frequencies.

Frequency (MHz) Number of iterations Frequency (MHz) Number of iterations

50 74 100 60
150 57 200 50
250 49 300 61
350 48 400 49
450 52 500 50
550 48 600 49
650 49 700 51
750 52 800 53
850 62 900 59
950 68 1000 71
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be explained in the following two aspects. First of all, as mentioned in Section 3.3, the global coarse problem is implemented
in serial, which includes the sparse matrix factorization and the forward and backward substitutions. Although its associated
time is small, it limits the maximum achievable speedup according to Amdahl’s law. Unfortunately, this limitation cannot be
alleviated easily by using a parallel sparse direct solver due to the sequential nature of the forward and backward substitu-
tions. An alternative solution to this problem is discussed in [3] by assigning the coarse problem to only a small number of
processors. The performance for such an implementation is problem dependent and beyond the scope of this paper. Second,
for general applications, a perfect load balance for parallel computation is almost impossible to obtain. In this paper, both
examples analyzed contain complicated structures such as fine details and thin dielectric substrates, which impose addi-
tional difficulty for distributing the work load to each processor. Moreover, it is worthy mentioning that the port boundary
condition [24] applied on the coaxial ports makes the mesh decomposition even more tricky, which requires mesh decom-
position does not cut through port surfaces. As we can see in the preprocessing speedup curve in Figs. 6 and 9, the load
imbalance becomes more and more obvious as Np increases, which also indicates the upper limits that can be achieved in
the parallel computation.

In the last example, the parallelized FETI-DPEM algorithm is applied to the simulation of plane wave scattering by a free-
standing submarine-like metallic structure, whose geometry is illustrated in Fig. 10(a). The largest dimension in the x�; y�
and z-directions is 30 m, 5.2 m and 6 m, respectively. A truncation surface with the first-order absorbing boundary condition
is placed 3 m away from the submarine surface. The truncation surface has the shape of a circular cylinder having a radius of
4.5 m and length of 28 m, with both ends capped by a hemispherical surface, yielding a total length of 37 m. For the simu-
lation, a discretization size (the average linear dimension of tetrahedral elements) of h ¼ 0:2 m and third-order hierarchical
basis functions are used, which yields a total of 1:33� 107 unknowns. The computational domain is automatically parti-
tioned into 514 subdomains, and the resultant size of the interface equation and the coarse problem is 9:4� 105 and
2:5� 104, respectively. The decomposed computational domain is illustrated in Fig. 10(b). The whole structure is excited
by a plane wave incident from the þx̂ direction. Fig. 11 shows the bi-static radar cross-sections (RCS) in the x� y plane at
300 and 600 MHz for the ĥ and /̂ polarizations, respectively. In addition, the induced electric current on the submarine sur-
face at 300 MHz is displayed in Fig. 12. In total, 61 and 49 iterations are required to solve the interface equation at 300 and
600 MHz, respectively, and a total solution time of 7.9 and 7.1 min are required using 64 processors. Finally, a numerical sca-
lability test of the FETI-DPEM algorithm is carried out on this scattering problem to further examine the performance as the
operating frequency increases. In the numerical experiment, we vary the operating frequency of the incident field, while fix-
ing the total problem size by fixing the discretization size h, the subdomain size H, and the number of subdomains Ns. In this
case, the first version of the FETI-DPEM method is demonstrated to be unscalable [6], whereas the second version provides a
numerically scalable result, as observed in [8] for other test problems. Table 1 shows the iteration numbers used to solve the
interface equation at different operating frequencies. In the frequency band considered, the mesh density changes gradually
from k=h ¼ 30 to k=h ¼ 1:5. In this case, the FETI-DPEM algorithm shows again the numerical scalability with respect to the
working frequency, as observed in [8].

5. Conclusions

This paper presented the parallel implementation of the FETI-DPEM algorithm for general 3D open-region electromag-
netic problems on a distributed-memory system using MPI. In such an implementation, the subdomain data are distributed
across processors, where the subdomain finite element system matrices are assembled and factorized completely in parallel.
Subdomain information is then exchanged among processors in the parallel matrix–vector multiplication process for the
iterative solution of the interface equation using the BiCGSTAB method. Finally, fields in the subdomains are recovered in
parallel using the calculated boundary condition at the subdomain interfaces. Implementation details were described and
practical guidelines were given together with numerical examples showing the performance of the parallel implementation.
A relatively good parallel efficiency has been achieved using such an implementation on a cluster system with an automatic
decomposition of the computational domain into hundreds of subdomains.
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